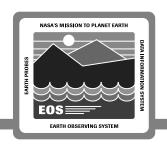


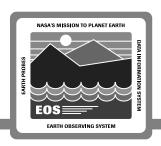
Projected System Access and Utilization Pitt Thome

System Design Review - 28 June 1994


Projected System Access and Utilization

OUTLINE

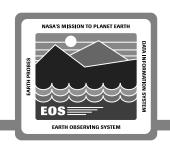
- Objectives
- Methods
- Assumptions
- Profiles of Projected System Usage
 - How Will Users Enter the System?
 - What Data Will They Use?
 - What Will They Extract from the System?
 - What Are the Inputs to EOSDIS?
- Observations and Implications

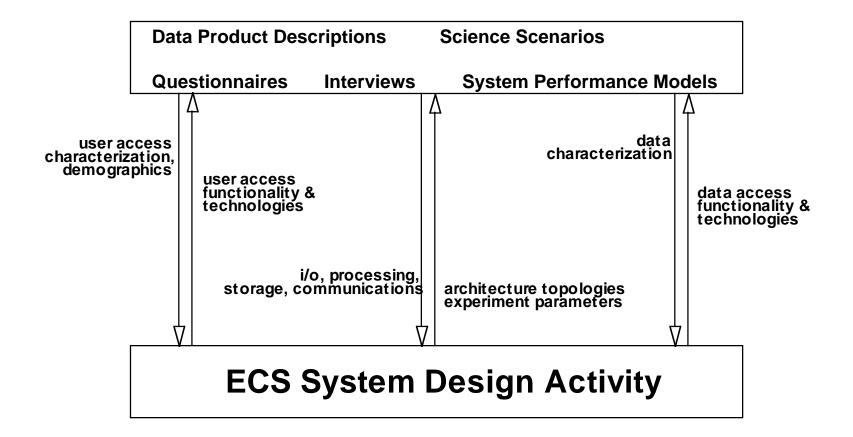

Objective

Characterize projected use of EOSDIS in terms of parameters critical to system design decisions.

- Bound the problem --- Identify design-drivers to focus future refinements
- Provide inputs for engineering analysis:
 - software implementation
 - hardware topology, sizing and description

Methods


Techniques


- Science Scenario Development
- Questionnaires
- Interviews
- Literature Surveys
- System Analysis
- Static Spreadsheet-based Push, Pull Models
- Quasi-Dynamic C-code Strings Model
- Spreadsheet-based Parametric Access Model

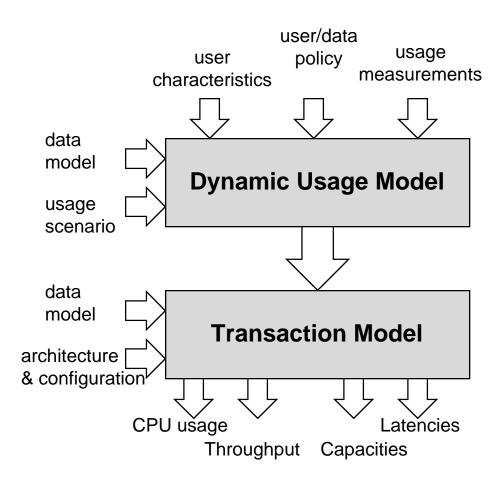
Sources

- Standard Product List
- Market Research Material (i.e., <u>Market Data Retrieva</u>l, 1992; <u>Peterson's</u>
 <u>Guide to Graduate Programs in the Physical Sciences & Mathematics</u>, 1994)
- Existing Data Centers (EDC, NCDC, NGDC, etc.)
- Interviews with Algorithm Development Teams

Inputs to Design

System Access and Utilization Analysis




Surveys-questionnaires-interviews-analyses-modeling-test
Refine Surveys-questionnaires-interviews-analyses-modeling-test
Refine Surveys-questionnaires-interviews-analyses-modeling test

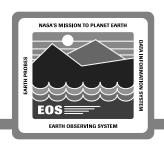
Next Steps

- Monitor trends (e.g., Version 0 and prototype usage)
- Analyze data collection content, especially browse
- Assess effects of various policy options (e.g., pricing) on demand
- Refine analysis in areas that are design drivers
- Conduct dynamic modeling

Modeling Plans

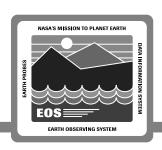
Two Models

 developed in parallel to work together - utilizing lessons learned in early design phase


Usage Model

- includes data/user policy in its characterization
- availab' at workshops and has a stict
 char stict
- acc age ements from V0 ar. Farly reference to assist in future load pre

Transaction Mod


• trar action-ba del to dete sys ads based on mode of all and configuration.

Assumptions


- Current focus is to bound the problem; provide a range of estimates to key questions.
- 1998-2003 Routine availability of standard products from AM1, TRMM, COLOR, LANDSAT and SAR missions.
- Total cost to EOSDIS users is low enough so as not to influence demand.
- System will provide a suite of services that matches needs of individuals and their communities - would permit management of services as user needs warrant and resources permit.
- Definition of Level 4 products and products derived from scientific investigations to be placed in EOSDIS currently very immature --- expected to significantly increase some demand estimates.

Profiles of System Usage

- How Will Users Enter the System?
- What Data Will They Use?
- What Will They Extract from the System?
- What Are the Inputs to the System?

How Will Users Enter EOSDIS?

ISSUES

- Potential number of users and frequency of access
- Access methods they will employ
- Access paths to data they will require

IMPORTANCE Permits characterization of system loads and complexity of accesses --- drives sizing of services

Potential Number of Users and Frequency of Accesses

Science Community

Importance: Describes the general landscape and provides overall scope of problem.

Size	Frequency of Access				
United States		Yearly (1-2)	1500	13%	
NASA EOS Funded Investigators	1900 - 3200	Quarterly (3-11)	3500	30%	
Other Investigators	<u>4200 - 8400</u>	Monthly (12-24)	1600	14%	
U.S. Total	6100-11600	Weekly (25-100)	3400	29%	
		Daily (100-250)	1600	14%	
Other Countries		Total	11600	100%	
EOS Investigators	280 - 470				
Other Investigators Other Countries Total	<u>4000-6000</u> 4300-6500	Total Accesso	es/year:	545,200	
		Accesses/Yea	ar/User:	47	

Implications

Well within predicted technology

Sources: Scenarios, EOS Investigators spreadsheet 4/20/94, 1993 EOS Handbook, <u>Peterson's Guide to Graduate Programs in the Physical Sciences & Mathematics</u>, 1994

Potential Number of Users and Frequency of Accesses

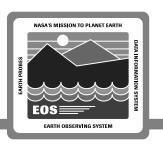
Non-Science Community

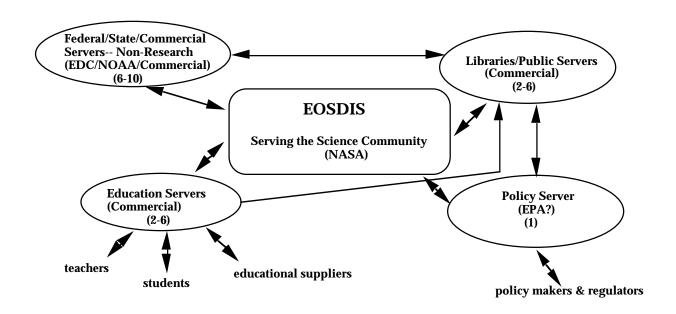
Size		Frequency of Ac	cesses	
United States Federal Government States Commercial-End Users,	1,500 - 2,200 1,500 - 3,000	Yearly (1-2) Quarterly (3-11) Monthly (12-24)	186,200 10,600 800	93% 5% <1%
Intermediaries, Education Suppliers Education (K-12)	400 - 700	Weekly (25-100) Daily (100-250)	1400 1000	<1% <1%
Teachers Students Libraries	2,000 - 7,000 58,000 - 174,000 6,000 - 12,000	Total Accesses	640,000/year	
Policy Makers Total	TBD 70,000 - 200,000	Accesses/year/user	3.2	

<u>Implications</u>

- The potentially large number of Non-Science users calls for:
 - management of resources to allocate ECS services on a priority basis
 - encouraging other service providers to serve these markets
- Design must accommodate interaction with other service providers

Sources: Questionnaires, Existing Data Centers, Interviews, Market Research Materials


Candidate Approach for Allocating Services


Guest	Decistored/Enternal Sustants	Registered with Enhancements
Login /authorization	Registered/External Systems Login /authorization/authentication	Registered with Enhancements Login /authorization/authentication
Login /authorization	Profile	Profile
CHUI/GUI-based I/F to ECS services	CHUI/GUI-based I/F to ECS services	CHUI/GUI-based I/F to ECS services
Search / Browse Information Service offers	Search / Browse Information Service offers Providers Subscriptions Data Dictionary	Search / Browse Information Service offers Providers Subscriptions Data Dictionary
ECS documents <u>Search Browse Data</u> Directory Inventory (simple)	ECS documents Search / Browse Data Directory Inventory (simple) Inventory (complex)	ECS documents Search / Browse Data Directory Inventory (simple) Inventory (complex) Inventory via API
Limited FTP retrieval	Unrestricted FTP retrieval Restricted file access, remote mount, and data server access	Unrestricted FTP retrieval Unrestricted file access, remote mount, data server access
Public domain S/W browsers	Public domain S/W browsers Verify, display, and translate ECS data files Basic subsetting and subsampling	Public domain S/W browsers Verify, display, and translate ECS data files Basic subsetting and subsampling
	Interface for user provided Data analysis and visualization tools Feature extraction Enhanced subsetting and subsampling	Interface for user provided Data analysis and visualization tools Feature extraction Enhanced subsetting and subsampling
I/F to electronic mail, BBs, News groups	I/F to electronic mail, BBs, news groups	I/F to electronic mail, BBs, news groups
3	Algorithm development tools	Algorithm development tools
	Data acquisition request (DAR)	Data acquisition request (DAR)
		Access to DAAC's Data ingest Production planning Data processing services Products under development
Guest Servers	ECS Client Software	ECS Client Software
Tutorial	Tutorial	Tutorial

194-703-PP1-001 PT-13

Service Providers

<u>Concept</u> Series of servers providing EOSDIS, value-added, and other products to meet non-science community needs.

<u>Implications</u> Reduces non-science EOSDIS users from 70,000-200,000 to 100-300 users with less demand on resources.

Access Methods They Will Employ

Science

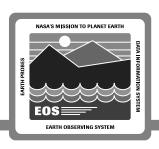
Importance:

- defines what the various loads or accesses are and the loads on the system
- defines what services are needed to support various modes of access
- provides insight into user environments

Entry Through Other Systems

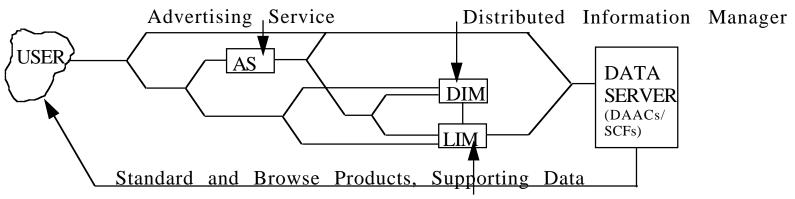
Access Profile

UNITED STATES	NUMBERS	Method	Percenta	iae	
Direct	5,900-11,000	<u></u>	1.5%	-3 <u>-</u>	Number
Through other Data Systems:		Telephone Interface Only			90-170
NOAA	100-300	Electronic	91.5%		5,600-10,600
CIESIN	?	Subscription		1,400-2,700	
Other	100-300 6 400 44 600	Browsers		2,000-3,800	(Note: NOT mutually exclusive)
Total FROM OTHER COUNTRIES	6,100-11,600	Remote File Access (RFA)	2,800-5,3	2,800-5,300	o `
Direct	2,900-4,500	Data Suppliers		800-1,500	
Through Other Data Systems	1,400-2,000	Machine-to-Machine	7%		430-810
(Europe, Japan)		Total	100%		C 400 44 C00
Total	4,300-6,500	Total	100%		6,100-11,600


Implications:

The fact that other data centers and individuals from other countries will be accessing EOSDIS indicates that:

- services need to serve heterogeneous communities
- services that allow users to access EOSDIS through other systems need to be provided


Sources: Scenarios, questionnaires

Access Paths to Data

Importance:

Access paths and number of users provide sizing information for various system components

Local Information Manager

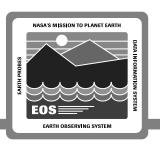
AS-Service connection facilitator LIM-Issuing searches across multiple data servers DIM-Issuing searches across multiple LIMS

Access Paths to Data

Importance:

Sizing of service components

	Accesses/Day		
	<u>Science</u>	Non-Science	
Direct to Data Servers	6,000	500	
Use of Advertising Service	600	11,200	
Through the DIM	100	1,200	
Through the LIM	200	1,200	

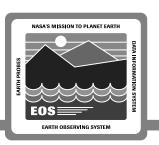

Implications:

- Attention to services allowing direct use of data servers to support science community
- Attention to efficiency of DIM & LIM to support non-science community

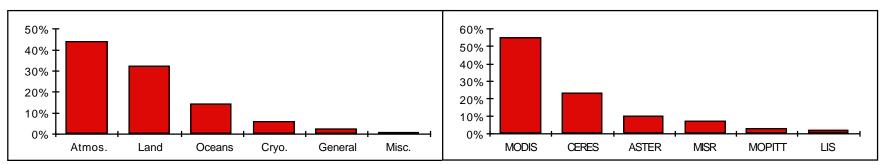
Sources: Scenarios, Questionnaires

194-703-PP1-001 PT-17

What Data Will They Use?

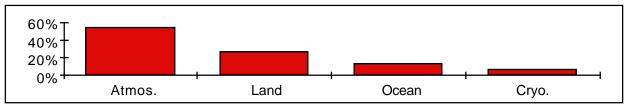

Issues

- Science community's relative discipline focus
- Complexity of search they will employ
- User accesses by Pyramid layer


Importance

- Affects disk and tape storage sizing
- Differences in communities' focus imply need for multiple "views" of data
- Accesses of different data types have different performance issues

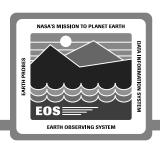
Science Community's Discipline Focus



Importance: Understanding the community's discipline focus leads to estimates of relative product demand.

Relative Product Interest, by Product Discipline, for EOS IDS

Relative Product Interest, by Instrument, for EOS IDS


Relative Sizes of Science User Disciplines

Implications: Several different disciplines will use the same data - ECS must provide customized views of data for different disciplines.

Source: EOS Investigators spreadsheet 4/20/94, Literature Survey, <u>Peterson's Guide to Graduate Programs in the Physical Sciences and</u>
Mathematics, 1994

194-703-PP1-001 PT-19

Complexity of Searches

<u>Importance:</u> Understanding complexity of searches allows us to assess loadings on different components of the system (Advertising Service, DIMs, LIMs, Data Server)

Percentage of Total Searches

Simple Searches: 60-75% Content Searches: 10-15%

Subset

Data Content

Coincident Searches: 15-25%

User Refined Coincident Searches

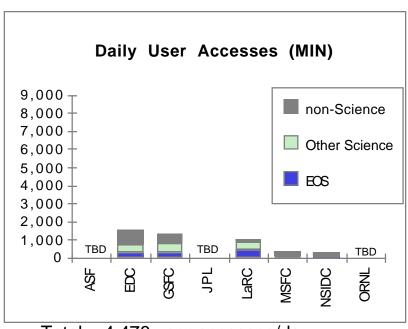
Match-up Coincident Searches

Complex Coincident Searches

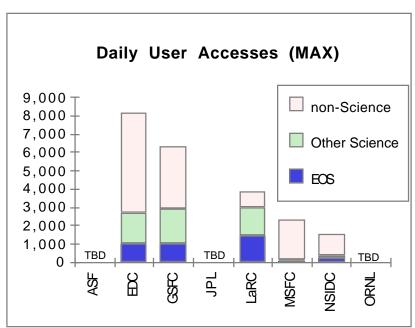
Note: Not all accesses are Searches.

Implications:

- Provide support for different complexity of searches
- Provide efficient support for coincident searches

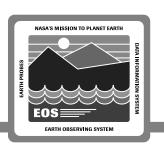

Sources: Scenarios

194-703-PP1-001 PT-20

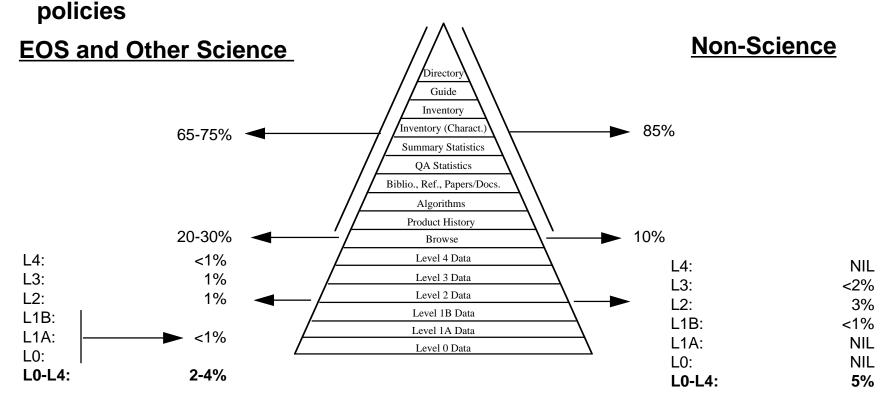

User Accesses to the System by DAAC

Importance: Provides bounding estimates on the level of activity at each DAAC

Total = 4,478 user accesses/day



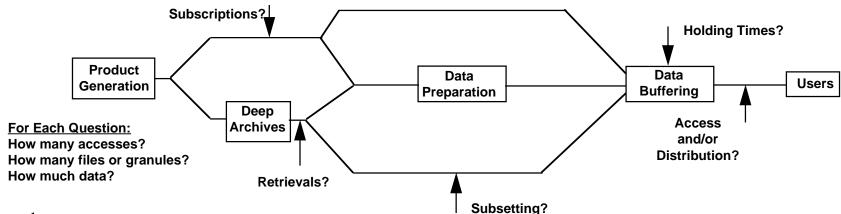
Total = 22,084 user accesses/day


<u>Implications:</u> Heterogeneous access profiles across DAACs: Different design solutions and resource requirements

Source: Scenarios, Questionnaires, EOS Investigators spreadsheet 4/20/94

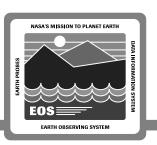
User Accesses to the System By Pyramid Layer

<u>Importance</u>: Selecting the appropriate storage media and staging


<u>Implications:</u> Confirms the need for rapid access to upper layers

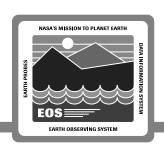
What will they Extract from EOSDIS?

Issues:

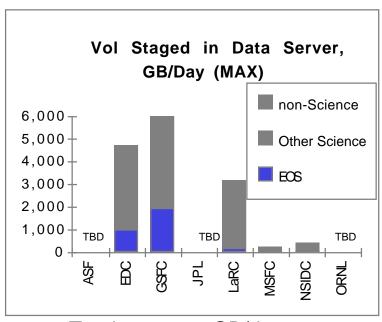

- Volumes by DAAC and Community
- Fraction distributed on physical media and by electronic transfer
- Fraction of distributions via standing order and ad hoc request

Importance:

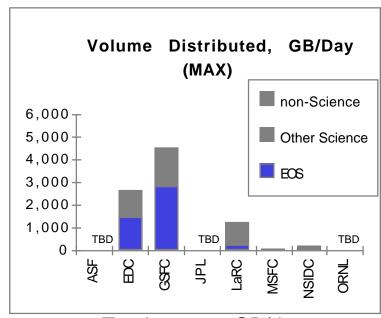
- Sizing of components
- Lapse time between request and "pickup" required for sizing storage



Importance:	Volumes	are also	a function	of Ge	ographical Scale
-------------	----------------	----------	------------	-------	------------------

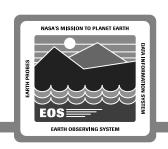

Science Users	PERCENTAGE	NUMBER OF USERS PER YEAR
Browse Products Only	NIL	NIL
1 X 10 ² KM ²	8%	500-900
1 X 10 ³ KM ²	39%	2,400-4,500
5 X 10 ⁵ KM ²	19%	1,200-2,200
1 X 10 ⁸ KM ²	34%	2,000-4,000
Total <u>Non-Science Users</u>	100%	6,100 - 11,600
Browse Products Only	93%	14,500-186,800
1 X 10 ² KM ²	3%	2,600-7,200
1 X 10 ³ KM ²	2%	1,800-4,300
5 X 10 ⁵ KM ²	<2%	800-1,300
1 X 10 ⁸ KM ²	<1%	300-400
Total	100%	70,000-200,000

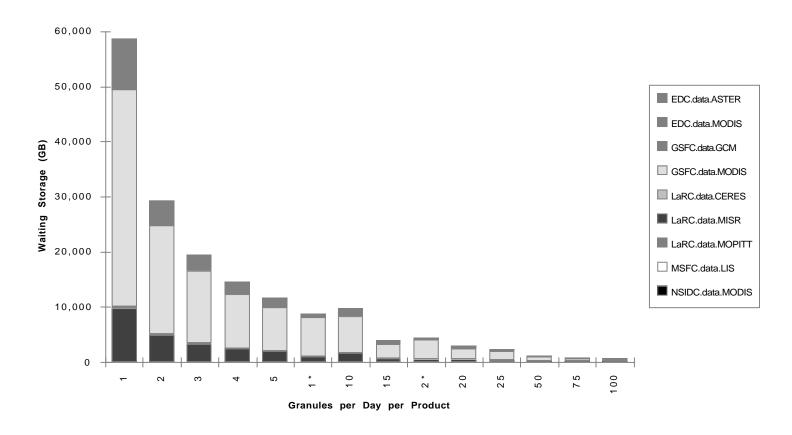
Source: Scenarios, Questionnaires, Interviews


What Will They Extract From EOSDIS?

<u>Importance</u> Impacts storage loading, determines I/O and computing requirements, communications bandwidth

Total = 14,393 GB/day(5,939 GB/day - min)

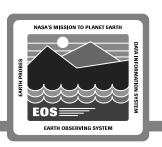


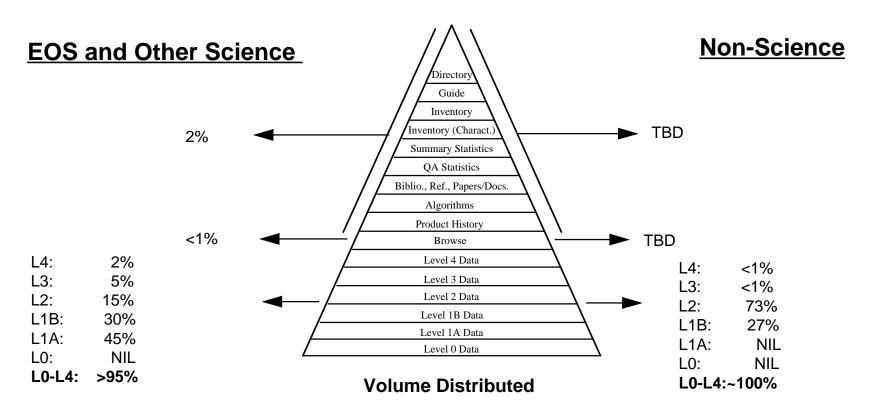

Total = 8,550 GB/day(3,991 GB/day - min)

Implications

- Volume distributed/volume staged shows amount of subsetting (~50%)
- Each community has different subsetting needs Variability is from 1/1 to 1000/1

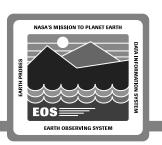
Granule Definition Affects Storage Needs




Sources: Quasi-Dynamic C-code Strings Model

194-703-PP1-001 PT-26

What Will They Extract from EOSDIS?



<u>Importance:</u> Impacts storage, loading, determines I/O and computing requirements, communication bandwidth

Implications: Confirms need for high I/O bandwidth to access lower levels

What Will They Extract From EOSDIS?

DISTRIBUTION NEEDS

Percentage of Users

Physical Media 15%

Electronic Transfer 85%

Access Mode Percentage of Users

• Standing Orders: 30%

• On-Demand/Ad Hoc: 70%

Implications:

- Design must be able to handle high number of electronic distributions, potentially high volumes
- Must look at question of automatic transfer vs. user-initiated transfer
- Significant physical media demand (5%) on standing orders. Therefore, must consider impacts on physical distribution services

Source: Scenarios, Questionnaires

What are the Inputs to EOSDIS?

Current Status of Analysis

EOS Platforms

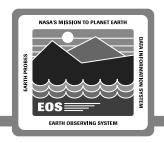
✓

• IDS Level 4 Products and Investigation Results

TBD

• TRMM

/

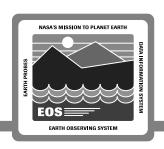

Landsat 7

/

SAR Missions (E-ERS-2/J-ERS-1/Radarsat)

✓

- Ancillary Data
- Correlative Data
- V0 migration/Pathfinders



Push Validation Findings

Data Volumes Product Definition	. Mostly consistent with SPSO data base, some refinementsNo Level 3 products at launch
I/O Factors	Assumption of one read OK, some data sets read more than once, some only once for more than one product
SCF Interfaces	.QC reports nominally 1%, problem products, random checks.
Quality Control	.Most instrument teams are not in line - except MOPITT
Meta Data Generation	. Estimates included, details of data TBD
Browse Data Generation	. Estimates included for some instruments, others not
Calibration	Done at low frequency (once or twice a month), not a major resource concern (MODIS review TBD)
Use of Quick Look	Only ASTER has plans for use of Quick Look in normal operations
Product Granularity	. Consistent with SPSO data base
Periodic Processing	Calibration is only identified periodic processing
On Demand Processing	. Consistent with SPSO data base, only ASTER

194-703-PP1-001 PT-30

Key Modeling Results

Observations and Implications

Observation Approximately 85% of the users will want distribution of

data by electronic means.

IMPLICATION As network capacity grows, ECS must accommodate a

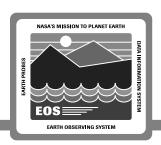
large number of users employing electronic transfers.

Observation Almost 30% of the users will request distribution through

standing orders.

IMPLICATION Provide efficient mechanisms for routine distribution.

Observation Potentially large number of U.S. non-science users (70,000-


200,000).

IMPLICATIONS ECS should plan to accommodate interaction with other

service providers.

Manage ECS service resources on a priority basis.

Observations and Implications

Observation The same data is used by a diverse user community.

Diversity of interest extends to scale and nature of queries.

IMPLICATIONS System must provide views of data customized for

different disciplines and communities.

Provide access at the parameter level.

Observation Large variation in relative dataset interest.

IMPLICATION Opportunity for improving response time by various

techniques for physical placement of data.

Observation Many users will have difficulty in dealing with information

that is very product, discipline, and instrument specific.

IMPLICATION Design must bridge differences and support system-wide

searches.